Asymmetric Catalysis

DOI: 10.1002/ange.200702278

Highly Diastereoselective Formation of Ruthenium Complexes for Efficient Catalytic Asymmetric Transfer Hydrogenation**

Walter Baratta,* Giorgio Chelucci, Eberhardt Herdtweck, Santo Magnolia, Katia Siega, and Pierluigi Rigo

The development of more efficient asymmetric catalysts for organic transformations is a topic of great interest for both industrial applications and academic research. [1] The choice of the chiral ligand for transition-metal complexes is a key factor in attaining a high level of asymmetric induction. Complexes containing two appropriate chiral ligands have been successfully employed to increase the level of enantioselectivity in catalytic reactions (the matched-ligands approach). This method is relatively tedious and requires the isolation of a library of enantiomerically pure ligands which need to be

correctly assembled. A particularly successful example is the *trans*-[RuCl₂(PP)diamine] (PP = diphosphane) system in which the correct combination of chiral diphosphane and diamine ligands leads to high enantioselectivity in the catahydrogenation lytic ketones.^[2] To overcome the problem of using two precious chiral ligands, different strategies have been developed. Efficient asymmetric catalytic systems have been obtained by reaction of a racemic metal complex, prepared from a racemic ligand, with a suitable chiral auxiliary, leading to deactivation (chiral poisoning) or activation of one metal enantiomer species. [3] Alternatively, efficient chiral catalysts have been prepared from a chirally flexible (tropos) ligand in combination with a rigid one. [4]

The ligand 1-(pyridin-2-yl)methanamine (Pyme; Scheme 1) has been used in the recently developed asymmetric transfer hydrogenation and hydrogenation complexes [RuCl₂(PP)Pyme].^[5] The presence of this ligand has been proven to accelerate^[5a,6] dramatically the transfer hydrogenation^[7] of ketones relative to the most active systems

Scheme 1. Synthesis of the single ruthenium diastereomers 1-5.

[*] Prof. W. Baratta, Dr. S. Magnolia, Dr. K. Siega, Prof. P. Rigo Dipartimento di Scienze e Tecnologie Chimiche Università di Udine

Via Cotonificio 108, 33100 Udine (Italy)

Fax: (+39) 0432-558-803 E-mail: inorg@dstc.uniud.it

Dr. G. Chelucci Dipartimento di Chimica Università di Sassari

Via Vienna 2, 07100 Sassari (Italy)

Dr. E. Herdtweck Lehrstuhl für Anorganische Chemie Technische Universität München Lichtenbergstrasse 4, 85747 Garching (Germany)

[**] This work was supported by the Ministero dell'Università e della Ricerca (MUR). We thank Johnson-Matthey/Alfa Aesar for a generous loan of ruthenium, and Stephan D. Hoffmann (TU München) for his help during the course of the X-ray measure-

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

reported to date. [8] Therefore, fast and highly enantioselective catalytic systems are expected when chiral diphosphanes are matched with an appropriate chiral Pyme ligand. Particularly attractive are the chiral 1-substituted-1-(pyridin-2-yl)methanamines [9] (RPyme, R=alkyl; Scheme 1) that display a stereogenic carbon center bound to the active NH_2 function.

We report herein the single-diastereomer complexes *cis*-[RuCl₂(Josiphos)RPyme], obtained by a one-pot reaction of [RuCl₂(PPh₃)₃] with a Josiphos diphosphane (1-[diarylphosphano]-2-[1-(dicyclohexylphosphano)ethyl]ferrocene) and a *racemic* mixture of RPyme (R = alkyl, Ph). These complexes catalyze the transfer hydrogenation of ketones with very high turnover frequency (TOF up to $70\,000\,h^{-1}$) and enantioselectivity (up to $99\,\%$ *ee*). To our knowledge, this is the first example in which the preparation of an efficient asymmetric catalyst with two matched chiral ligands has been greatly simplified by a step-economical synthesis that avoids the necessity of using both ligands in enantiopure form.

Zuschriften

In situ generated *cis*-[RuCl₂((R,S)-Josiphos)Pyme], prepared by heating at reflux a 2-propanol solution of [RuCl₂-(PPh₃)₃] and the C_1 -symmetric diphosphane (R,S)-Josiphos (1 h) and Pyme (2 h), promotes the asymmetric transfer hydrogenation of acetophenone in basic 2-propanol at 60 °C to give (R)-1-phenylethanol with a high TOF (30 000 h⁻¹) and with 91 % ee. [10] These results parallel those obtained with the isolated complex [Eq. (1)].

When Pyme in the above system is substituted by a racemic mixture of 1-methyl-1-(pyridin-2-yl)methanamine (MePyme; 3 equiv), complete reduction of acetophenone occurs under the same reaction conditions in 10 min, with increases in both the TOF ($40000 \, h^{-1}$) and of the *ee* value of the *R*-alcohol (95% *ee*) relative to the Pyme derivative. A ³¹P NMR spectroscopic control experiment reveals that the RuCl₂–(R,S)-Josiphos system prepared in situ reacts with (\pm)-MePyme (2.2 equiv) at 110 °C within 2 h, affording predominantly one set of resonances (>95% major isomer) attributable to the single diastereomer, *cis*-[RuCl₂((R,S)-Josiphos)(S)-MePyme] (1; Scheme 1).

Isolation of the thermally stable complex $\mathbf{1}^{[11]}$ was easily accomplished (see Experimental Section). To establish the geometry of the complex and the configuration of the coordinated MePyme ligand, an X-ray structural analysis was carried out on a single crystal of $\mathbf{1}$ (Figure 1). The ruthenium atom is in a distorted octahedral environment with the two chloride ligands *cis* relative to another, and the carbon atom C6 of the MePyme ligand has an *S* configuration. The (*S*)-MePyme ligand has a small N1-Ru-N2 angle [76.50(12)°],

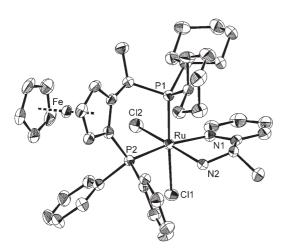


Figure 1. ORTEP drawing of 1. Thermal ellipsoids are set at 50% probability; hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ru-Cl1 2.4868(10), Ru-Cl2 2.4453(11), Ru-Pl 2.3140(10), Ru-P2 2.2854(10), Ru-N1 2.127(3), Ru-N2 2.100(3); Cl1-Ru-Cl2 89.54(3), N1-Ru-N2 76.50(12).

with the methyl substituent oriented away from the cyclohexyl groups as a result of steric hindrance.

When the $RuCl_2-(R,S)$ -Josiphos system is treated with an excess of (\pm) -MePyme (2.5 equiv) at room temperature rather than at elevated temperature, both enantiomers of MePyme coordinate to the metal center, leading to a mixture of 1 and two $[RuCl_2((R,S)-Josiphos)(R)-MePyme]$ diastereomers.^[12] Importantly, upon heating, these two isomeric complexes exchange the (R)-MePyme ligand with (S)-MePyme present in excess in solution, giving 1 as the sole diastereomer. This point has been established definitively using the single enantiomer (R)-MePyme,[9] which reacts with the RuCl2-(R,S)-Josiphos system, affording a mixture of the two diastereomers reported above. Addition of an excess of (\pm)-MePyme (2.5 equiv) leads to the conversion of these isomers into 1 (110 °C in 3 h), as expected. It is likely that the process of enantiomeric exchange occurring at high temperatures and leading to the thermodynamically most stable diastereomer^[5a] for the cis ruthenium complex 1 is due to steric effects, that is, repulsion between the methyl group of (R)-MePyme with a cyclohexyl substituent of the diphosphane. It should be noted that this system clearly differs from the well-known catalytic system for hydrogenation, trans- $[RuCl_2(Tolbinap)diamine]$ (Tolbinap = (1,1'-binaphthalene)-2,2'-diylbis(di-p-tolylphosphane)), in which the coordination of the diamine is virtually irreversible and therefore the single-diastereomer complex can only be obtained using two single-enantiomer ligands.^[3e]

The complexes **2** and **3**^[11] were easily isolated in a similar fashion to **1** as single diastereomers in 81 and 71 % yield, using $[RuCl_2(PPh_3)_3]$ in combination with (R,S)-Josiphos/(\pm)-PhPyme and (S,R)-Josiphos/(\pm)-tBuPyme, respectively (Scheme 1). The X-ray analysis of **2**^[11] confirms that the same arrangement observed for **1** occurs, with the phenyl group bound to a carbon in S configuration. Complexes **1–3** display high catalytic activity in the transfer hydrogenation of acetophenone (0.1m; ketone/[Ru] = 2000:1) in 2-propanol in the presence of NaO*i*Pr (2 mol %) at 60 °C, giving quantitative formation of 1-phenylethanol within a few minutes and with TOFs in the range 63 000–70 000 h⁻¹, which are among the highest values reported at this temperature (Table 1).

With compounds 1 and 2, (R)-1-phenylethanol has been obtained with 96 and 95% ee, respectively, whereas with 3 bearing (S,R)-Josiphos, the S enantiomer (95% ee) was formed. These complexes are also efficient systems for the asymmetric reduction of other methyl aryl ketones. For example, with compound 1, 2'-methylacetophenone and 3'methoxyacetophenone are rapidly reduced to the R-alcohols with excellent enantiomeric excesses (98 and 99 % ee, respectively), whereas with 3, the methyl aryl ketones having ortho substituents (Me, Cl, OMe) are promptly converted $(TOF = 26000-30000 h^{-1})$ into the S enantiomers with 97– 98% ee (Table 1). No decrease in enantioselectivity was observed at lower ruthenium loadings (ketone/[Ru] = 5000:1) and the ee value remains largely constant during the reaction and 30 min after complete conversion, suggesting that the oxidation of the chiral alcohol with the acetone formed is a slow process. It is noteworthy that complexes 1-3 can also be generated in situ using racemic RPvme ligands

Table 1: Catalytic transfer hydrogenation of methyl aryl ketones (MeCOAr) with complexes 1-5 [$^{[a]}$

Complex	Ar	Conversion		TOF [h ⁻¹] ^[c]	ee [%] ^[b]
		[%] ^[b]	t [min]		
1	Ph	97	5	63 000	96 (R)
1	2'-MeC ₆ H ₄	95	10	44 000	98 (R)
1	3'-MeOC ₆ H ₄	98	5	66 000	99 (R)
2	Ph	97	10	67000	95 (R)
3	Ph	96	10	70 000	95 (S)
3	2'-MeC ₆ H ₄	98	40	26 000	97 (S)
3	2'-CIC ₆ H ₄	99	30	27000	98 (S)
3	2'-MeOC ₆ H ₄	94	10	30000	97 (S)
4	Ph	97	10	40 000	96 (S)
5	Ph	97	10	34 000	97 (S)
5	2'-CIC ₆ H ₄	99	30	24 000	97 (S)
5	2'-MeOC ₆ H ₄	98	30	25 000	98 (S)
5	$3'$ -MeOC $_6$ H $_4$	97	10	26 000	>99 (S)

[a] Conditions: MeCOAr (0.1 M), complexes 1–5 (0.05 mol%), and NaOiPr (2 mol%) in 2-propanol at 60 °C. [b] The conversion and ee values were determined by GC analysis. [c] Turnover frequency (moles of ketone converted into alcohol per mole of catalyst per hour) at 50% conversion.

and have much the same enantioselectivity as the isolated compounds. Regarding the effect of the matched/mismatched ligands in catalysis, when the single enantiomer (R)-MePyme is employed in combination with (R,S)-Josiphos, 2'-methoxy-acetophenone is reduced to the R-alcohol with 71% ee (TOF = 15000 h⁻¹), whereas with (S,R)-Josiphos, which leads to a single ruthenium diastereomer, the conversion into the S-alcohol occurs with both higher ee value (98%) and rate (TOF = 32000 h⁻¹).

To extend this method to other diphosphanes, we have prepared derivatives for the asymmetric reduction of ketones containing a Josiphos ligand with bulkier aryl groups (Josiphos*). Thus, the complexes cis-[RuCl₂((S,R)-Josiphos*)(R)-RPyme] (R = Me (4), tBu (5)), [11] bearing 4-MeO-3,5-Me₂C₆H₂ in place of phenyl groups have been successfully isolated by treating [RuCl₂(PPh₂)₃] with (S,R)-Josiphos* and the corresponding (\pm)-RPyme (1:1.2:2.5) in dichloromethane at 20°C, followed by heating the mixture of products to reflux in 2-propanol/heptane (1:1 in volume) overnight (Scheme 1). Preliminary results with atropos ligands show that a single ruthenium diastereomer is formed using (R)-MeObiphep (biphep = 6,6'-dimethoxybiphenyl-2,2'-diyl)bis(diphenylphosphane)) in combination with the (\pm) -PhPyme ligand. [13] Complexes 4 and 5 are found to catalyze the complete reduction of acetophenone in a few minutes under the same catalytic conditions used for 1–3, with a high TOF (up to 40 000 h⁻¹) and a slightly higher ee value (96 and 97 %) of the S-alcohol (Table 1). Furthermore, 2'-chloroacetophenone, and 2'- and 3'-methoxyacetophenone have been reduced to the S enantiomers using 5 with ee values in the range 97–99 %.

It is likely that the mechanism of the transfer hydrogenation involves the [RuHX(Josiphos)RPyme] (X=H, OR') species, with $\beta\text{-hydrogen}$ elimination and ketone insertion reactions, $^{[14]}$ in accordance with our study on cis- [RuCl₂(PP)Pyme]. $^{[5a]}$

In conclusion, we have described herein a practical procedure for the simple preparation of the single-diastereo-

mer catalysts *cis*-[RuCl₂(Josiphos)RPyme]—also in situfrom [RuCl₂(PPh₃)₃], Josiphos ligands, and a racemic mixture of RPyme ligands, avoiding the need for the resolution of the aminopyridine ligands. These complexes efficiently catalyze the asymmetric transfer hydrogenation of ketones with both a very high TOF (up to 70000 h⁻¹ at 60°C) and enantioselectivity (up to 99% *ee*) which is due to the correctly matched diphosphane and aminopyridine ligands. Work is in progress to extend this practical approach to other metal-catalyzed asymmetric reactions.

Experimental Section

1: Toluene (2 mL) was added to $[RuCl_2(PPh_3)_3]$ (175 mg, 0.182 mmol) and (R,S)-Josiphos· C_2H_3OH (120 mg, 0.187 mmol) and the suspension was heated to reflux for 2 h. After addition of (\pm) -MePyme (50 mg, 0.409 mmol), the solution was heated to reflux again for a further 2 h and thereafter the solvent was evaporated. The solid was treated with 2-propanol (2 mL), and the solution was heated to reflux for 1 h, affording a yellow precipitate, which was collected by filtration and dried under reduced pressure. Yield: 89 mg (55%).

2: The synthesis of the yellow compound 2 was carried out as described for 1, using (\pm) -PhPyme (75 mg, 0.407 mmol) in place of (\pm) -MePyme. Yield: 140 mg (81 %).

3: The synthesis of 3 was carried out as described for 1, using (S,R)-Josiphos- C_2H_5OH (120 mg, 0.187 mmol) and (\pm) -tBuPyme (66 mg, 0.402 mmol) in place of (\pm) -MePyme. The toluene solution was concentrated, and addition of pentane afforded a yellow precipitate, which was collected by filtration and dried under reduced pressure. Yield: 120 mg (71%).

4: [RuCl₂(PPh₃)₃] (50 mg, 0.052 mmol) and (*S*,*R*)-Josiphos* (44 mg, 0.062 mmol) were dissolved in dichloromethane (2 mL), and the solution was stirred for 2 h. After addition of (±)-MePyme (16 mg, 0.131 mmol), the solution was stirred for 1 h and the solvent was evaporated. The resulting dark oil was treated with a 2-propanol/heptane (1:1) mixture (2 mL) and the solution was heated to reflux overnight. After evaporation, the product was treated with heptane (2 mL, 1 h at reflux) to give a yellow precipitate, which was collected by filtration, washed with pentane, and dried under reduced pressure. Yield: 40 mg (77%).

5: The synthesis of the yellow compound 5 was carried out as described for 4, using (\pm) -tBuPyme (21 mg, 0.128 mmol) in place of (\pm) -MePyme. Yield: 35 mg (64%).

Typical procedure for the catalytic transfer hydrogenation: The ruthenium complex (3.0 μ mol) was dissolved in 2-propanol (3 mL). The ketone (2 mmol) was dissolved in 2-propanol (18.6 mL), and the solution was heated to 60 °C under argon. Addition of NaOiPr (0.1m, 400 μ L) and the solution containing the ruthenium complex (1.0 mL) led to the reduction of the ketone. The yield was determined by GC with a MEGADEX-ETTBDMS- β chiral column (ketone/[Ru]/NaOiPr = 2000:1:40; 0.1m ketone).

Received: May 23, 2007 Published online: August 27, 2007

Keywords: asymmetric catalysis · chiral resolution · hydrogen transfer · phosphane ligands · ruthenium

a) The Handbook of Homogeneous Hydrogenation, Vol. 1-3
 (Eds.: J. G. de Vries, C. J. Elsevier), Wiley-VCH, Weinheim,
 2007; b) Asymmetric Catalysis on Industrial Scale (Eds.: H. U,
 Blaser, E. Schmidt), Wiley-VCH, Weinheim, 2004; c) Comprehensive Asymmetric Catalysis, Supplements 1-2 (Eds.: E. N.
 Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin, 2004;

Zuschriften

- d) Catalytic Asymmetric Synthesis, 2nd ed. (Ed.: I. Ojima), Wiley-VCH, New York, 2000.
- [2] a) H. Doucet, T. Ohkuma, K. Murata, T. Yokozawa, M. Kozawa,
 E. Katayama, A. F. England, T. Ikariya, R. Noyori, Angew. Chem. 1998, 110, 1792; Angew. Chem. Int. Ed. 1998, 37, 1703;
 b) R. Noyori, T. Ohkuma, Angew. Chem. 2001, 113, 40; Angew. Chem. Int. Ed. 2001, 40, 40.
- [3] a) J. W. Faller, A. R. Lavoie, J. Parr, Chem. Rev. 2003, 103, 3345;
 b) P. J. Walsh, A. E. Lurain, J. Balsells, Chem. Rev. 2003, 103, 3297;
 c) K. Muñiz, C. Bolm, Chem. Eur. J. 2000, 6, 2309;
 d) K. Mikami, M. Terada, T. Korenaga, Y. Matsumoto, S. Matsukawa, Acc. Chem. Res. 2000, 33, 391;
 e) T. Ohkuma, H. Doucet, T. Pham, K. Mikami, T. Korenaga, M. Terada, R. Noyori, J. Am. Chem. Soc. 1998, 120, 1086;
 f) J. W. Faller, D. W. I. Sams, X. Liu, J. Am. Chem. Soc. 1996, 118, 1217;
 g) K. Maruoka, H. Yamamoto, J. Am. Chem. Soc. 1989, 111, 789.
- [4] K. Mikami, M. Yamanka, Chem. Rev. 2003, 103, 3369.
- [5] a) W. Baratta, E. Herdtweck, K. Siega, M. Toniutti, P. Rigo, Organometallics 2005, 24, 1660; b) T. Ohkuma, C. A. Sandoval, R. Srinivasan, Q. Lin, Y. Wei, K. Muñiz, R. Noyori, J. Am. Chem. Soc. 2005, 127, 8288.
- [6] a) W. Baratta, P. Da Ros, A. Del Zotto, A. Sechi, E. Zangrando, P. Rigo, Angew. Chem. 2004, 116, 3668; Angew. Chem. Int. Ed. 2004, 43, 3584; b) W. Baratta, A. Del Zotto, G. Esposito, A. Sechi, M. Toniutti, E. Zangrando, P. Rigo, Organometallics 2004, 23, 6264; c) W. Baratta, J. Schütz, E. Herdtweck, W. A. Herrmann, P. Rigo, J. Organomet. Chem. 2005, 690, 5570.
- [7] a) J. S. M. Samec, J. E. Bäckvall, P. G. Andersson, P. Brandt, Chem. Soc. Rev. 2006, 35, 237; b) S. Gladiali, E. Alberico, Chem. Soc. Rev. 2006, 35, 226; c) S. E. Clapham, A. Hadzovic, R. H. Morris, Coord. Chem. Rev. 2004, 248, 2201.

- [8] a) P. Braunstein, M. D. Fryzuk, F. Naud, S. J. Rettig, J. Chem. Soc. Dalton Trans. 1999, 589; b) H. Yang, M. Alvarez-Gressier, N. Lugan, R. Mathieu, Organometallics 1997, 16, 1401; c) P. Dani, T. Karlen, R. A. Gossage, S. Gladiali, G. van Koten, Angew. Chem. 2000, 112, 759; Angew. Chem. Int. Ed. 2000, 39, 743.
- [9] For a review on the stereoselective synthesis of optically active 1-substituted-1-(pyridin-2-yl)methanamines, see: a) G. Chelucci, *Tetrahedron: Asymmetry* 2005, 16, 2353. For resolution processes, see: b) L. E. Iglesias, V. M. Sánchez, F. Rebolledo, V. Gotor, *Tetrahedron: Asymmetry* 1997, 8, 2675; c) H. E. Smith, L. J. Schaad, R. B. Banks, C. J. Wiant, C. F. Jordan, *J. Am. Chem. Soc.* 1973, 95, 811.
- [10] [Ru]/Josiphos/Pyme = 1:1.5:1; acetophenone/Ru/NaO*i*Pr = 2000:1:40; TOF at 50% conversion.
- [11] NMR spectroscopic data for 1–5 and the X-ray crystal analysis of 1 and 2 are provided as Supporting Information.
- [12] $^{31}P\{^{1}H\}$ NMR spectrum in toluene with CD₂Cl₂ (10% in volume) as internal lock: $\delta = 61.6$ (d, $^{2}J_{(P,P)} = 40.9$ Hz) and 41.1 ppm (d, $^{2}J_{(P,P)} = 40.9$ Hz), compound **1**, major product; $\delta = 59.2$ (d, $^{2}J_{(P,P)} = 38.6$ Hz) and 39.2 ppm (d, $^{2}J_{(P,P)} = 38.6$ Hz); $\delta = 58.8$ (d, $^{2}J_{(P,P)} = 39.3$ Hz) and 47.4 ppm (d, $^{2}J_{(P,P)} = 39.3$ Hz), minor product.
- [13] 31 P NMR spectrum in CD₂Cl₂: $\delta = 49.2$ (d, $^{2}J_{(PP)} = 38.5$ Hz) and 46.8 ppm (d, $^{2}J_{(PP)} = 38.5$ Hz).
- [14] a) O. Pàmies, J. E. Bäckvall, Chem. Eur. J. 2001, 7, 5052; b) A. Aranyos, G. Csjernyik, K. J. Szabó, J. E. Bäckvall, Chem. Commun. 1999, 351; c) W. Baratta, G. Chelucci, S. Gladiali, K. Siega, M. Toniutti, M. Zanette, E. Zangrando, P. Rigo, Angew. Chem. 2005, 117, 6370; Angew. Chem. Int. Ed. 2005, 44, 6214.